
CS64: Computation for Puzzles and Games

Autumn 2022
Lecture 5: Lights Out!

Chess scandal update

Lights Out

https://www.jaapsch.net/puzzles/lights.htm#quiet

The rules
● 5x5 grid of buttons, some are initially lit

● Pushing a button toggles the state of that button and its
(up to four) orthogonal neighbors

● The goal is – as the name implies – to get all the lights to
be off

Exciting live demo!

A heuristic that doesn't work well
● Try to minimize the number of buttons that are on

This
configuration
with only two
lights on…

…requires 13
button
presses!

Some useful observations
● The order of the presses does not matter. (Why not?)

Some useful observations
● The order of the presses does not matter.

○ Each button's final state is determined entirely by how
many total times it and its neighbors were pressed.

Some useful observations
● The order of the presses does not matter.

○ Each button's final state is determined entirely by how
many total times it and its neighbors were pressed.

● Because of this, there is no reason to press any individual
button more than once.

Strategy 1: Brute force
● Breadth-first search!

● Try each of the 25 possible starting moves.
○ Try each of the 25 possible starting moves from those

configurations.
■ etc. etc., repeat until all lights are out

Strategy 1: Brute force
● Breadth-first search!

● Try each of the 25 possible starting moves.
○ Try each of the 25 possible starting moves from those

configurations.
■ etc. etc., repeat until all lights are out

● Some optimizations:
○ Keep track of which states we've seen, and don't

re-explore those
○ Also keep track of which buttons have been pressed,

and don't press a button twice

Can we do better?
What about the
following strategy:

go through the second
row pushing all the
buttons below any
lights that are on in
the first row…

Can we do better?
What about the
following strategy:

go through the second
row pushing all the
buttons below any
lights that are on in
the first row…

Can we do better?
What about the
following strategy:

go through the second
row pushing all the
buttons below any
lights that are on in
the first row…

Can we do better?
What about the
following strategy:

go through the second
row pushing all the
buttons below any
lights that are on in
the first row…

Can we do better?
What about the
following strategy:

…then repeat for the
third row…

Can we do better?
What about the
following strategy:

…then repeat for the
third row…

Can we do better?
What about the
following strategy:

…then repeat for the
third row…

Can we do better?
What about the
following strategy:

…then repeat for the
third row…

Can we do better?
What about the
following strategy:

…and so on

Can we do better?
What about the
following strategy:

…and so on

Can we do better?
What about the
following strategy:

…and so on

Can we do better?
What about the
following strategy:

…and so on

Can we do better?
What about the
following strategy:

…and so on

Can we do better?
What about the
following strategy:

…and so on

Can we do better?

Now what
● Galaxy brain: Turn

it over and do the
same thing again?

○ Unfortunately,
in this case,
this just puts
us back in the
exact same
situation…

Let's back up
The idea here was on the right
track. Once we choose our button
presses in the first row, the rest of
the solve process is totally
determined.

There are 25 = 32 ways to choose
what to do in the first row.

So… try all of them and see if any of
them work!

Let's back up
The idea here was on the right
track. Once we choose our button
presses in the first row, the rest of
the solve process is totally
determined.

There are 25 = 32 ways to choose
what to do in the first row.

So… try all of them and see if any of
them work!

If you use Python and
you like puzzles, the
itertools library is
indispensable

When is it solvable?
Say you want to make a board and hand it to your younger
sibling…

Are there unsolvable puzzles? If so, how many?

Everything is linear algebra
● The grid is a 5x5 matrix of 1s and 0s. We are working over

the finite field F2 (basically 1 + 1 = 0)

● Pushing a button is like adding another matrix. E.g., here's
the matrix corresponding to pushing the middle button:

Write each button press
operation as a column
vector like this.

There are 25 such vectors,
one for each button.

Write each button press
operation as a column
vector like this.

There are 25 such vectors,
one for each button.

We can stick these
together in a 25x25 matrix.
Call it M.

Encode the grid state itself as
the column vector g.

Then we want some solution
vector s such that Ms + g = 0.

(Each entry of s corresponds to
"do I use this column vector or
not?", i.e., "do I push this
button or not?)

1
1
0
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

. + =

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

We're working modulo 2, so any vector plus itself is 0. Therefore we can replace

Ms + g = 0

with

Ms = g

Now, for which initial grid states g is there a solution s?

We're working modulo 2, so any vector plus itself is 0. Therefore we can replace

Ms + g = 0

with

Ms = g

Now, for which initial grid states g is there a solution s?

Invert M and check s = M-1g? Unfortunately, M is not invertible! (This implies
that not all of the buttons are really necessary. In fact, M has rank 23, and so it is
possible to solve any solvable Lights Out puzzle without using two of the
buttons at all.)

It can be shown (via more linear algebra) that a configuration is solvable if and
only if it is orthogonal to both of these vectors:

Handwaving away some more math…

(Orthogonal here means that the dot product of either vector with the initial
state's vector is 0.)

It can be shown (via more linear algebra) that a configuration is solvable if and
only if it is orthogonal to both of these vectors:

Handwaving away some more math…

(Orthogonal here means that the dot product of either vector with the initial
state's vector is 0.)

Implication: You can get an unsolvable state by taking any solvable state and
toggling a single light (not pressing a button, just changing that one light),
except in one of these positions. (They are a small X in the middle of the grid)

It can be shown (via more linear algebra) that a configuration is solvable if and
only if it is orthogonal to both of these vectors:

Handwaving away some more math…

(Orthogonal here means that the dot product of either vector with the initial
state's vector is 0.)

Implication: You can get an unsolvable state by taking any solvable state and
toggling a single light (not pressing a button, just changing that one light),
except in one of these positions. (They are a small X in the middle of the grid)
So for any solvable state, there are about 20 unsolvable ones, so < 5% of states
are solvable?

It can be shown (via more linear algebra) that a configuration is solvable if and
only if it is orthogonal to both of these vectors:

Handwaving away some more math…

(Orthogonal here means that the dot product of either vector with the initial
state's vector is 0.)

Implication: You can get an unsolvable state by taking any solvable state and
toggling a single light (not pressing a button, just changing that one light),
except in one of these positions. (They are a small X in the middle of the grid)
So for any solvable state, there are about 20 unsolvable ones, so < 5% of states
are solvable?

No! This argument would only work if there were no overlaps, i.e., each
unsolvable state were only reachable from one solvable state. But this
turns out to be very untrue.

● The actual proportion of solvable initial states is ¼.

○ Instruction manual: "It is possible to create a puzzle so difficult that it
may not have a solution!"

○ There are three other "worlds" that you can be stuck in forever!

○ Mean tip: start with a grid with just the top left light on (an unsolvable
state), push buttons a bunch of times, then give that puzzle to your
younger sibling.
■ What if they start recognizing previously seen bad states and

giving up? Try a different one of the three bad worlds

● For any solvable state, there are actually four solutions (recall that two
buttons don't matter)

Some final facts

● We have a pretty fast program for the 5x5 board!

● Recall that any fixed-size game has a constant time solution (however
huge the constant!), but we care about how the solving time scales with the
size of the game.

● Our method could be extended to arbitrarily sized square (even nonsquare)
boards…

Is this problem tractable?

Let's back up
The idea here was on the right
track. Once we choose our button
presses in the first row, the rest of
the solve process is totally
determined.

There are 25 = 32 ways to choose
what to do in the first row.

So… try all of them and see if any of
them work!

Oh no! Our algorithm has an exponential
component! So this isn't a polynomial-time
solution.

In fact, this problem is also NP-complete. Boo!

