
CS64: Computation for Puzzles and Games

Autumn 2022
Lecture 5: Lights Out!



Chess scandal update



Lights Out

https://www.jaapsch.net/puzzles/lights.htm#quiet



The rules
● 5x5 grid of buttons, some are initially lit

● Pushing a button toggles the state of that button and its 
(up to four) orthogonal neighbors

● The goal is – as the name implies – to get all the lights to 
be off

Exciting live demo!



A heuristic that doesn't work well
● Try to minimize the number of buttons that are on

This 
configuration 
with only two 
lights on…

…requires 13 
button 
presses!



Some useful observations
● The order of the presses does not matter. (Why not?)
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Some useful observations
● The order of the presses does not matter.

○ Each button's final state is determined entirely by how 
many total times it and its neighbors were pressed.

● Because of this, there is no reason to press any individual 
button more than once.



Strategy 1: Brute force
● Breadth-first search!

● Try each of the 25 possible starting moves.
○ Try each of the 25 possible starting moves from those 

configurations.
■ etc. etc., repeat until all lights are out



Strategy 1: Brute force
● Breadth-first search!

● Try each of the 25 possible starting moves.
○ Try each of the 25 possible starting moves from those 

configurations.
■ etc. etc., repeat until all lights are out

● Some optimizations:
○ Keep track of which states we've seen, and don't 

re-explore those
○ Also keep track of which buttons have been pressed, 

and don't press a button twice





Can we do better?
What about the 
following strategy:

go through the second 
row pushing all the 
buttons below any 
lights that are on in 
the first row…
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Can we do better?



Now what
● Galaxy brain: Turn 

it over and do the 
same thing again?

○ Unfortunately, 
in this case, 
this just puts 
us back in the 
exact same 
situation…



Let's back up
The idea here was on the right 
track. Once we choose our button 
presses in the first row, the rest of 
the solve process is totally 
determined.

There are 25 = 32 ways to choose 
what to do in the first row.

So… try all of them and see if any of 
them work!
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If you use Python and 
you like puzzles, the 
itertools library is 
indispensable



When is it solvable?
Say you want to make a board and hand it to your younger 
sibling…

Are there unsolvable puzzles? If so, how many?



Everything is linear algebra
● The grid is a 5x5 matrix of 1s and 0s. We are working over 

the finite field F2 (basically 1 + 1 = 0)

● Pushing a button is like adding another matrix. E.g., here's 
the matrix corresponding to pushing the middle button:



Write each button press 
operation as a column 
vector like this.

There are 25 such vectors, 
one for each button.



Write each button press 
operation as a column 
vector like this.

There are 25 such vectors, 
one for each button.

We can stick these 
together in a 25x25 matrix.
Call it M.



Encode the grid state itself as 
the column vector g.

Then we want some solution 
vector s such that Ms + g = 0.

(Each entry of s corresponds to 
"do I use this column vector or 
not?", i.e., "do I push this 
button or not?)
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We're working modulo 2, so any vector plus itself is 0. Therefore we can replace

Ms + g = 0

with

Ms = g

Now, for which initial grid states g is there a solution s?



We're working modulo 2, so any vector plus itself is 0. Therefore we can replace

Ms + g = 0

with

Ms = g

Now, for which initial grid states g is there a solution s?

Invert M and check s = M-1g? Unfortunately, M is not invertible! (This implies 
that not all of the buttons are really necessary. In fact, M has rank 23, and so it is 
possible to solve any solvable Lights Out puzzle without using two of the 
buttons at all.)



It can be shown (via more linear algebra) that a configuration is solvable if and 
only if it is orthogonal to both of these vectors:

Handwaving away some more math…

(Orthogonal here means that the dot product of either vector with the initial 
state's vector is 0.)
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It can be shown (via more linear algebra) that a configuration is solvable if and 
only if it is orthogonal to both of these vectors:

Handwaving away some more math…

(Orthogonal here means that the dot product of either vector with the initial 
state's vector is 0.)

Implication: You can get an unsolvable state by taking any solvable state and 
toggling a single light (not pressing a button, just changing that one light), 
except in one of these positions. (They are a small X in the middle of the grid)
So for any solvable state, there are about 20 unsolvable ones, so < 5% of states 
are solvable?

No! This argument would only work if there were no overlaps, i.e., each 
unsolvable state were only reachable from one solvable state. But this 
turns out to be very untrue.



● The actual proportion of solvable initial states is ¼.

○ Instruction manual: "It is possible to create a puzzle so difficult that it 
may not have a solution!"

○ There are three other "worlds" that you can be stuck in forever!

○ Mean tip: start with a grid with just the top left light on (an unsolvable 
state), push buttons a bunch of times, then give that puzzle to your 
younger sibling.
■ What if they start recognizing previously seen bad states and 

giving up? Try a different one of the three bad worlds

● For any solvable state, there are actually four solutions (recall that two 
buttons don't matter)

Some final facts



● We have a pretty fast program for the 5x5 board!

● Recall that any fixed-size game has a constant time solution (however 
huge the constant!), but we care about how the solving time scales with the 
size of the game.

● Our method could be extended to arbitrarily sized square (even nonsquare) 
boards…

Is this problem tractable?



Let's back up
The idea here was on the right 
track. Once we choose our button 
presses in the first row, the rest of 
the solve process is totally 
determined.

There are 25 = 32 ways to choose 
what to do in the first row.

So… try all of them and see if any of 
them work!

Oh no! Our algorithm has an exponential 
component! So this isn't a polynomial-time 
solution.

In fact, this problem is also NP-complete. Boo!


