
CS64: Computation for Puzzles and Games

Autumn 2022
Lecture 8: The 15-Puzzle and Rubik's Cube



Announcements
● No in-person puzzle session this Friday, since everyone is 

probably heading off for break anyway…
○ But I may post some on Canvas!

● This is the final week to withdraw, but there is little incentive 
to do so.
○ This week I'll send a form where you can let me know if 

you have attended / will attend enough of the lectures, or 
plan to do a small project.

● More info on the class puzzle hunt coming soon! I'm excited!



AI world domination update An adversarial strategy tricks 
KataGo (which is kinda like 
AlphaZero) into ending the 
game early because it thinks 
it's so far ahead



Two crazes, a century apart

a mania in 1880 a fad in the 1980s



The 15-Puzzle

Perhaps the quintessential stock 
public-domain puzzle. Shows up all 
over the place in games etc.



A national mania in early 1880
From a Cincinnati paper. 
Apologies to any Pennsylvanians 
in the class!

But why was this 
puzzle thought of as 
so exasperating and 
complicated?
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They were doing it wrong

It turns out that only half of all starting configurations are solvable!
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Writing decades after the 
fact, Sam Loyd falsely 
claimed to have invented 
the 15-puzzle.

He also offered a $1000 
prize (closer to $30000 
today?) for solving this 
impossible variant…



One easy(ish) check for solvability
● Start with a 1 if the empty cell is in the top 

or third row, or a 0 if the empty cell is in 
the second or bottom row.

● Then count the number of pairwise 
inversions in the order of the pieces, 
reading left-to-right, then top to bottom. 
Take 1 if this number is odd, or 0 if it's 
even.

● The puzzle is solvable if and only if the 
sum of these is even.
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One easy(ish) check for solvability
● Start with a 1 if the empty cell is in the top 

or third row, or a 0 if the empty cell is in 
the second or bottom row.

● Then count the number of pairwise 
inversions in the order of the pieces, 
reading left-to-right, then top to bottom. 
Take 1 if this number is odd, or 0 if it's 
even.

● The puzzle is solvable if and only if the 
sum of these is even.

1 2 3 6

5 4 7 8

9 10 11

13 14 15 12

Empty cell position: Third 

row = 1

Inversions: 6-5, 6-4, 5-4, 
13-12, 14-12, 15-12

6 total = even = 0

1 + 0 = 1. Not even, so not 
solvable!

 



Why does this work?
● If we move a piece within a row:

○ The row number of the blank cell doesn't change.
○ No inversions are created or destroyed.
○ Therefore, no change in our metric.
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Why does this work?
● If we move a piece within a row:

○ The row number of the blank cell doesn't change.
○ No inversions are created or destroyed.
○ Therefore, no change in our metric.

● If we move a piece within a column:
○ The row number of the blank cell changes by ±1, so we go from a 0 to a 1 or 

vice versa.
○ The number of inversions changes by ±1 or ±3.

■ The piece is moving to the other side of a block of 3 cells, and nothing 
else is changing.

■ If it had inversions with 0, 1, 2, or 3 of them, it now has inversions with 
3, 2, 1, or 0, respectively, for a net change of -3, -1, +1, or +3.

○ Our metric doesn't change (odd + odd = even)

● Since the final state has no inversions and its empty cell in the bottom right, the 
metric is even there. And valid moves don't change that!
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Didn't they know this in 1880?
● Yes! Even in 1879!

● But imagine trying to explain this in the newspaper. Most people 
probably wouldn't have been receptive to arguments based on parity 
and/or permutations.
○ Even today!

● The puzzle offers so much superficial freedom to explore, so it is hard to 
convince someone that none of that matters.

● Depending on the manufacturing quality, it might have been all too easy 
to make an accidental illegal move somewhere, then think you'd solved 
an impossible puzzle.
○ Solutions are long, so probably no one was writing them down as 

they went 



A callout 140+ years later

Wrong!

My take: the newspaper column writer is 
having a bit of fun and setting up annoyance 
for his friend



How hard is it (for solvable states)?
● Lights Out: Fixing stuff breaks other 

stuff. Hard to progress toward a goal in 
an obvious way.

● Rubik's Cube: Solving one face of the 
cube is not too hard, but then fixing stuff 
breaks (or at least temporarily breaks) 
other stuff.

● 15-Puzzle: You can solve most of the grid 
and then fix the remaining part.



Demo: solving by hand
● "Scoop and loop" method (I just made up this name – it's 

not an actual thing)



That was inefficient – can we do better?
● Sure, we can find a shortest solution…

● What kind of starting grid do you think would be the worst 
(i.e., require the largest number of moves)?



http://kociemba.org/themen/fifteen/fifteensolver.html

Sort of reversed, but not exactly. (Note: a pure reverse could actually be 
helpful, e.g., 4-3-2-1 could be rotated to the top.)



BFS vs. DFS
● Breadth-first search (BFS)

○ finds all states 1 move away from the start state,
○ then all states that are 2 moves away,
○ and so on until it finds the goal state.

Plodding! Has to exhaustively try everything shorter before it finds 
an answer, and also remember an increasingly large band of states.

● Depth-first search (DFS)
○ looks much more like a human solving the puzzle…

■ but a human with an amazing memory who knows not 
to repeat a state, and remembers how to backtrack 
when they get stuck.

Risky! Can get lucky fast, or can go way off into the weeds.



Iterative deepening
Do DFS but only up to depth 1. Then do it again (starting over) but 
only down to depth 2… and so on until a solution is found.

First thought: isn't this worse? It does a bunch of redundant work!



Iterative deepening
Do DFS but only up to depth 1. Then do it again (starting over) but 
only down to depth 2… and so on until a solution is found.

First thought: isn't this worse? It does a bunch of redundant work!

Second thought: well, most of the work is in the bottom layer of 
the tree anyway, so that's not so bad…

And this strategy uses much less memory than BFS, which has to 
keep track of every solution at a given depth.

It also can't miss a solution within the specified depth range, 
unlike DFS which could shoot past it.
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○ First of all, we have to talk about generalizations to n x n 
boards and study the asymptotic behavior. Any particular 
finite board is solvable in O(1) time, technically!
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Is the 15-puzzle NP-complete?
● Depends on what we mean!

○ First of all, we have to talk about generalizations to n x n 
boards and study the asymptotic behavior. Any particular 
finite board is solvable in O(1) time, technically!

○ Even then, what problem do we mean?
■ "Can it be solved?" – this is polynomial and we saw 

how
■ "Find me a series of moves that solves it" – also 

polynomial time
■ "Can it be solved within k moves" – this is 

NP-complete 



The Rubik's Cube
● Invented in the 1970s, exploded onto the 

world stage in 1980

● Still a huge competitive scene
○ until recently there was even a 

category for fastest solve using feet
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Major recent results
● No configuration requires more than 20 moves (2010; 

Rokicki, Kociemba, Davidson, Dethridge)

○ Was not just "run Google computers on every possible 
configuration" (there are 43 quintillion of them)

● "Can this configuration be solved in k moves" is NP-complete 
(2017; Demaine, Eisenstadt, Rudoy)

○ Reduction from the known NP-complete "is there a 
Hamiltonian path from a to b in this graph?" problem





Once narrowed down, this search used a version of iterative deepening.



What is a group?
A set G equipped with a binary operation ‧, such that

● closure: for all a, b in G, a‧b is in G 

● associativity: for all a, b, c in G, (a‧b)‧c = a‧(b‧c)

● identity: there is an element in G – call it 1 – such 
that for each a in G, 1‧a = a‧1 = a

● inverse: for each a in G, there exists a-1 in G such 
that a‧a-1 = a-1 ‧ a = 1



Example: set = integers, operation = addition 
closure: for all a, b in G, a‧b is in G integer + integer = 

integer

associativity: for all a, b, c in G, (a‧b)‧c 
= a‧(b‧c)

addition is already 
known to be associative

identity: there is an element in G – 
call it 1 – such that for each a in G, 1‧a 
= a‧1 = a

the identity is 0 
(remember that the ‧ is 
addition here)

inverse: for each a in G, there exists 
a-1 in G such that a‧a-1 = a-1 ‧ a = 1

the inverse of a is -a



The Rubik's Cube Group
The set:

● Describe each possible reachable cube configuration by some 
list of operations that gets there from the solved state.

● Take the set of all such lists of operations.

The binary operation: Concatenation (starting from the solved 
state, perform the first list of operations, then the second)

● Unlike with our addition example, the group is notably not 
commutative: for two elements a and b,  a‧b may yield a 
different result than b‧a
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closure: for all a, b in G, a‧b is in G composing two lists of moves 
puts us in a state that can itself 
be described by a list of moves 

associativity: for all a, b, c in G, 
(a‧b)‧c = a‧(b‧c)

in both cases the combined 
ordered list of moves is the 
same

identity: there is an element in G – 
call it 1 – such that for each a in G, 1‧a 
= a‧1 = a

the identity is the element 
corresponding to the solved 
state itself (empty list of moves)

inverse: for each a in G, there exists 
a-1 in G such that a‧a-1 = a-1 ‧ a = 1

each individual move can be 
reversed and the whole list can 
be performed backwards



But why bother with all this?
● Now we can use all the stuff that mathematicians have 

proved about groups! Tools for discovering and classifying 
internal structure, subgroups, symmetry, etc.

○ group theory is pretty much the study of symmetry…

○ "the power of group theory to abstractly formalize why 
everything sucks" - a mathematician friend of mine 

● The authors of this paper took advantage of a much smaller 
subgroup to guide their search and avoid a lot of redundant 
computation.



I wish we had time for more group stuff
● Maybe more in an optional puzzle / problem set?

● If this sounds intriguing, consider taking:

○ Math 109 (as an elective for the CS major)

○ Math 120 (if you plan to major in math or do more 
algebra stuff)


