
CS64: Computation for Puzzles and Games

Autumn 2022
Lecture 9: Video Games and Speedruns

A small plug

It's good!

And has some
puzzly stuff

Announcements
● Reminder: this is our last Wednesday lecture! (because Week

10 is a grind for everyone as is)
○ I'm sorry we never got to Grundy numbers. Go look them

up, it's nice to be aware of them…

Announcements
● Reminder: this is our last Wednesday lecture! (because Week

10 is a grind for everyone as is)
○ I'm sorry we never got to Grundy numbers. Go look them

up, it's nice to be aware of them…

● Please fill out the attendance / puzzle hunt time Google form!
(See the pinned Ed post)
○ I will follow up if you don't, but still, please do

Announcements
● Reminder: this is our last Wednesday lecture! (because Week

10 is a grind for everyone as is)
○ I'm sorry we never got to Grundy numbers. Go look them

up, it's nice to be aware of them…

● Please fill out the attendance / puzzle hunt time Google form!
(See the pinned Ed post)
○ I will follow up if you don't, but still, please do

● The puzzle hunt looks like it will take 2-3 hours. It has a nice
payoff at the end, so I encourage doing the whole thing! There
will also be prizes for the fastest team(s).
○ Final announcement of date/time tonight

Tool-assisted speedruns

● Whereas different video games have different notions of
"score" (if any), time is a universal currency. How fast can we
beat this video game that we like?

● …and can we do it even faster than that? Can we shave off
another second? Can we get the time below some
round-number threshold like the 2 minute mark?

● What if we get computers to help us?

ht
tp
s:
//w

w
w
.y
ou
tu
be
.c
om

/w
at
ch
?v
=b
rS
sT
m
_y
z0
U

http://www.youtube.com/watch?v=brSsTm_yz0U&t=4

ht
tp
s:
//w

w
w
.y
ou
tu
be
.c
om

/w
at
ch
?v
=q
f-t
u2
oj
O
b8

http://www.youtube.com/watch?v=qf-tu2ojOb8&t=163

ht
tp
s:
//w

w
w
.y
ou
tu
be
.c
om

/w
at
ch
?v
=_
Y-
S
-B
td
2z
U

http://www.youtube.com/watch?v=_Y-S-Btd2zU&t=117

Interlude: Why do we care?
● Especially in the frenetic modern era, humans insist on doing

everything fast

● Consider the similarity to the problem of getting from point A
to point B as fast as possible during commute traffic…

○ and the "state" could be complicated, e.g., how much do
you spend on bridge tolls? how much gas do you use?

● Researchers (e.g., DeepMind) use video games as test beds for
AI because they are complex but not too complex

How can computers help us here?
● Execution: Perform acts of frame-perfect dexterity

not (consistently) achievable by our puny, fallible
human bodies

How can computers help us here?
● Execution: Perform acts of frame-perfect dexterity

not (consistently) achievable by our puny, fallible
human bodies

● Planning: Find glitches and optimal routes

How can computers help us here?
● Execution: Perform acts of frame-perfect dexterity

not (consistently) achievable by our puny, fallible
human bodies

● Planning: Find glitches and optimal routes

● Why isn't optimal routefinding easy? Just do the
thing that gets you the farthest, the fastest, right?

ht
tp
s:
//w

w
w
.y
ou
tu
be
.c
om

/w
at
ch
?v
=B

hI
gB

-V
ZR

K
Q

http://www.youtube.com/watch?v=BhIgB-VZRKQ&t=55

What happened there?
● "Damage boosting": our hero took damage from a bat to get

knocked back onto a platform, avoiding a long trip downstairs

● The game state is more complicated than it may seem:

○ We only have so much health. We may be able to refill it
using items, but doing that takes time!

○ A special subweapon (the watch) was needed to stop time
to get the bat to arrive at the right time. Getting a
subweapon takes time!

○ Subweapons consume hearts, so it matters how many
hearts we have. Getting hearts takes time!

Dynamic programming interlude

Mario's extremely basic adventure
(probably like 50 bucks on Switch)

In this game, Mario has two kinds of move
Option 1: Go forward one step

Option 2: Jump

coins are good
you want as many as possible
because Mario's life is empty

enemies do not move
(they've been doing this for 35+ years, the
excitement isn't there anymore)

not OK to walk into enemies
how did you get hit, it was just standing there

OK to land on enemies
because Mario is an asshole

c'mon man

Greedy strategies aren't always
optimal

2 coins

What we should have done

3 coins

Why not just try every path?
Exponential number…

Why not just try every path?
Exponential number… so any solution that
explicitly considers them all is exponential

0

0

what? we can't get here…
but you'll see why we
need it

Solving via DP

0

1

top row cell:
value from downleft,
plus 1 if coin

0

0

1

0

bottom row cell:
max of:
1. value from upleft
2. value from left if
no enemy here

0

0

1

0

10

top row cell:
value from downleft,
plus 1 if coin

0

1

0 1

10

bottom row cell:
max of:
1. value from upleft
2. value from left if
no enemy here

0

1

0 1

10 1

top row cell:
value from downleft,
plus 1 if coin

0

1

0 1

10 1

1

bottom row cell:
max of:
1. value from upleft
2. value from left if
no enemy here

0

1

0 1

10 1

1

top row cell:
value from downleft,
plus 1 if coin

2

0

1

0 1

10 1

1

2

1

bottom row cell:
max of:
1. value from upleft
2. value from left if
no enemy here

0

1

0 1

10 1

1

2

1

top row cell:
value from downleft,
plus 1 if coin

1

0

1

0 1

10 1

1

2

1

1

2

bottom row cell:
max of:
1. value from upleft
2. value from left if
no enemy here

0

1

0 1

10 1

1

2

1

1

2

3

top row cell:
value from downleft,
plus 1 if coin

0

1

0 1

10 1

1

2

1

1

2

3

2

bottom row cell:
max of:
1. value from upleft
2. value from left if
no enemy here

0

1

0 1

10 1

1

2

1

1

2

3

2

Wait a minute...
Isn't this just the "exponential" slide again?

0

1

0 1

10 1

1

2

1

1

2

3

2

Wait a minute...
Isn't this just the "exponential" slide again?
No! We took linear time.

once we get this far, the strategy
from then on doesn't depend on
how we got there

Code!

More space-efficient code!

Even more space-efficient code (thx Manas!)

This eliminates
the need for a
2D array – and
now only uses
3 values – but
is a little harder
to understand.

Back to speedrunning
● Can do the same sort of thing with time instead of number of

coins.
○ "What's the earliest time we can possibly reach this point

in the level?"

● What if we have other stuff like life total, number of hearts,
which subweapon…
○ "What's the earliest time we can possibly reach this point

in the level, with this much life, this many hearts, this
subweapon…" etc. – explosion in complexity, but possible

○ Pretty much the same thing but with a multi-dimensional
array of values

amazingly, there have
been CS theory papers
on the computational
complexity of solving
the damage-boosting
problem…

…and on the hardness
of games based on their
design elements.

Manipulating randomness
● In old games (and many real-life situations!), a

pseudorandom number generator is used to determine
random events (e.g., how many bats appear).

● Sometimes you can figure out how the pseudorandom
number generator works and reverse-engineer it.

ht
tp
s:
//w

w
w
.y
ou
tu
be
.c
om

/w
at
ch
?v
=_
Y-
S
-B
td
2z
U

http://www.youtube.com/watch?v=Gm9cKEWbTiU&t=7

Performing computation within games

ht
tp
s:
//w

w
w
.y
ou
tu
be
.c
om

/w
at
ch
?v
=a
S
ls
tP
pI
W
-E

http://www.youtube.com/watch?v=aSlstPpIW-E&t=363

Training AIs to play games
● Nice: write a AI that is tailored to be good at one particular

game after observing humans (AlphaGo)

Training AIs to play games
● Nice: write a AI that is tailored to be good at one particular

game after observing humans (AlphaGo)

● Nicer still: write a AI that is tailored to be good at one
particular game even without observing human play (AlphaGo
Zero)

Training AIs to play games
● Nice: write a AI that is tailored to be good at one particular

game after observing humans (AlphaGo)

● Nicer still: write a AI that is tailored to be good at one
particular game even without observing human play (AlphaGo
Zero)

● Impressive: write an AI that is good at playing games in
general, given the rules (Alpha Zero)

Training AIs to play games
● Nice: write a AI that is tailored to be good at one particular

game after observing humans (AlphaGo)

● Nicer still: write a AI that is tailored to be good at one
particular game even without observing human play (AlphaGo
Zero)

● Impressive: write an AI that is good at playing games in
general, given the rules (Alpha Zero)

● Even more impressive: write an AI that is good at playing
games in general, even when it has to infer the rules (MuZero)

Modern reinforcement learning
● In contemporary games, it is not possible for an AI agent to

consider and evaluate all possible moves at each state (there
could be quajillions of them)

giant disclaimer: I have not
taken CS234 and am not an
RL expert

Modern reinforcement learning
● In contemporary games, it is not possible for an AI agent to

consider and evaluate all possible moves at each state (there
could be quajillions of them)

● The tl;dr is that these AIs learn the "landscape" of what
moves are good using deep learning
○ which is basically a bunch of linear algebra with nonlinear

functions mixed in to allow for more complexity

giant disclaimer: I have not
taken CS234 and am not an
RL expert

Modern reinforcement learning
● In contemporary games, it is not possible for an AI agent to

consider and evaluate all possible moves at each state (there
could be quajillions of them)

● The tl;dr is that these AIs learn the "landscape" of what
moves are good using deep learning
○ which is basically a bunch of linear algebra with nonlinear

functions mixed in to allow for more complexity

● With a sense of this "landscape" in mind, the AIs do variants
of dynamic programming
○ and also tune the model parameters in clever ways

giant disclaimer: I have not
taken CS234 and am not an
RL expert

● intentionally gave
the agent a limited
camera view of the
game and limited
its movement
speed

● got a SC pro to
consult

● beat 99.8% of
human players on
Battle.net

A more digestible example
● LearnFun/PlayFun by Tom7 (suckerpinch on YouTube, watch all his

stuff!!!!) for a "fun" conference in the early 2010s.

○ key idea: it is usually good when values in the game's memory
(score, position in the level…) go up

○ The AI watches a human play for a little bit and then builds its own
objective function ("score") based on how values in memory change

○ There are some subtleties (how to identify values in memory that are
stored as, e.g., two 8-bit numbers)

● Learns to play (general) NES games… with varying degrees of success.

ht
tp
s:
//w

w
w
.y
ou
tu
be
.c
om

/w
at
ch
?v
=q
f-t
u2
oj
O
b8

https://www.youtube.com/watch?v=
Q-WgQcnessA

http://www.youtube.com/watch?v=YGJHR9Ovszs&t=155

ht
tp
s:
//w

w
w
.y
ou
tu
be
.c
om

/w
at
ch
?v
=Q

-W
gQ

cn
es
sA

http://www.youtube.com/watch?v=Q-WgQcnessA&t=303

Takeaways
● What DeepMind and other cutting-edge researchers want is general AI /

algorithmic solving, and games and puzzles are a useful stepping stone

Takeaways
● What DeepMind and other cutting-edge researchers want is general AI /

algorithmic solving, and games and puzzles are a useful stepping stone

● Reinforcement learning, driven by neural networks / deep learning,
seems to be the the best way we have to tame the combinatorial
explosion of how many possible things a game agent could potentially
try

○ still a very open problem how to implement this in a general way

Takeaways
● What DeepMind and other cutting-edge researchers want is general AI /

algorithmic solving, and games and puzzles are a useful stepping stone

● Reinforcement learning, driven by neural networks / deep learning,
seems to be the the best way we have to tame the combinatorial
explosion of how many possible things a game agent could potentially
try

○ still a very open problem how to implement this in a general way

● Let's not forget that games and puzzles are fun and often
mathematically beautiful. We each have only so much time on this earth!
Joy should be part of our personal objective functions!

DEPTH/RIGOR
 CLASS

● Theory

○ CS 154 (Computational Complexity), 254, 254B
○ CS 151 (Logic Programming), CS 157 (Logic)
○ CS 161 (Algorithms), CS 168 (Modern Algorithmic Toolbox)
○ CS 164??? someday? (expanded version of this class)
○ CS 250 (Error-correcting codes)
○ CS 269I (Incentives in CS) – game theory
○ Econ and MS&E have a bunch of classes on game theory

● Math

○ Math 61DM, 62DM, 63DM – discrete math
○ Math 107 (Graph Theory), 108 (Combinatorics)
○ Math 109/120 (Abstract Algebra), 104/113 (Linear Algebra)
○ Math 193 (Polya Problem Solving Seminar)
○ Math 231 (Math/Stats of Gambling) or anything with Persi Diaconis

● AI

○ CS 221 (Intro to AI) – has a really fun Pac-Man project
○ CS 227B (General Game Playing)
○ CS 229 (Machine Learning) – warning, eats your life, don't take it

first
○ CS 230 (Deep Learning), CS 234 (Reinforcement Learning), CS

224R (Deep Reinforcement Learning), CS 332 (Advanced RL)
○ CS 238 (Decision Making Under Uncertainty) - take this and/or 221

first?
○ lots of others, I'm sure (e.g., vision, robotics…)

● Design - I know nothing about these but design is important

○ CS 146 (Intro to Game Design)
○ CS 247G (Design for Play)
○ CS 377G (Designing Serious Games)

Please do the feedback form when it comes out
Although my time at Stanford is ending soon, even
after I'm down in San Diego I may try to continue
remotely teaching this class or a more rigorous
variant, CS164. So your thoughts would be very helpful!

Thank you for taking this class!

