
CS64: Computation for Puzzles and Games

Autumn 2022
Ian Tullis

Lecture 1: Word Games / Puzzles

● Super quick class overview

● How to win (and lose) at Scrabble

● If time: Tries and Ghost-busting

A fun 1-unit break from Stanford intensity
● Each week: lecture on Wednesday, optional puzzle/problem session

on Friday

● S/NC grading. To get an S: either attend 6 of 9 Wednesday lectures,
or do a small informal project on something that interests you. Or
both if you want!
○ Attendance will be self-reported, later in the quarter – keep

track of which you came to, and don't stress about it!

● Ed forum for questions / discussions / sharing fun stuff

● Will attempt recordings and post on Canvas

● https://web.stanford.edu/class/cs64 has more complete details

https://web.stanford.edu/class/cs64

Course goals
● Explore how we can apply CS theory and AI to

games and puzzles to make them even more fun

● Introduce some useful algorithms / ideas that are
often not covered in our standard CS classes

● Enjoy solving puzzles / playing games

● Get ourselves (even more) excited about CS theory
and AI

Scrabble

one of the only still-playable
classic American board games

Alfred Mosher Butts,
inventor of Scrabble.
Two of his three
names are legal
words!

More typical "living room" play

Bingos are arguably
the most important
part of the game.

What high-level play actually looks like

To git gud at
tournament-level
Scrabble, you have to
memorize a ton of
obscure words.
Knowing their
meanings is only
marginally useful.

What a winning Scrabble AI needs to do on each turn:

● The easy part: Identify all possible legal
moves

● The hard part: Pick the best one

Easy part: Identifying valid board plays
● The played tiles have to all be in the same row or column.

● Pick an ordered (sub)set of your 7 tiles…
○ 7! + (7 choose 6)*6! + … = 13699

● …and a row/column and a starting point…
○ (15*2) * 15 = 450

● and then put your chosen tiles down, in your chosen order,
skipping over already-filled cells (and rejecting plays that go off
the board).

● 13699 * 450 = a mere 6 million or so, easy for a computer!

Easy part: Checking a potential play
● Checking which new words have been formed is

inefficient naively, but can be improved a bit…
○ e.g., only check rows/columns that actually had

tiles added to them
○ there is probably a neat data structure for this

● Checking whether the newly formed words are all
legal is difficult for humans but easy for a
computer (it knows all the words!)
○ Humans can bluff other humans…

Hard part: How good is a move?
● Is it a good idea to always pick a move with the

highest score?

Hard part: How good is a move?
● Is it a good idea to always pick a move with the

highest score?

○ Even this is enough to create a formidable
opponent, but it's far from optimal.

○ Making a highest-scoring move can leave
crappy tiles behind in your rack (e.g. a Q that
just sits there turn after turn) and hamper your
future success.

A better way to evaluate moves
● What factors are important?

○ Score matters! This is how you win games!
○ The tiles left behind in your rack
○ …

A better way to evaluate moves
● What factors are important?

○ Score matters! This is how you win games!
○ The tiles left behind in your rack
○ The board position that you leave (are there

high-scoring opportunities available for the
opponent?)

○ Side note: The tiles in the opponent's rack can be
inferred, up to a point. Can you imagine how?

● How to quantify all this? How much do these factors
matter relative to one another?

One idea: some kind of linear model
● Value = a * score + b * tiles the move leaves in your

rack + c * board position + d * opponent's tiles…
○ but how do you quantify the strength of the

tiles left? or (especially) the board position?

● This is hard! (I tried to do a CS238 project like
this.) Let's see how one of the most prominent
Scrabble AIs does it…

The Quackle AI finds the most promising moves
Notice that
Quackle
knows that
this
positioning of
ATOP is better
than our old
one (which
put vowels
next to double
letter squares)

Static evaluation
Playing NU for
2 points is still
considered
pretty strong
because it
leaves behind
CEINRT, which
has a high
probability of
allowing a
bingo next turn

Dynamic evaluation (simulation)

How good can this get?
● Well, how much time / memory / computing power do

you have?

● Exhaustive simulation (checking every possible thing that
could happen) is just not possible except in the
"endgame" (when there are very few tiles left)
○ jargon: the state space is just too large

● Some prep can be done "offline"! Parameters (like the
strength of tiles left behind in the rack) can be estimated
by having the AI play millions of games against itself, and
then they can be hardcoded in…

● This XKCD comic is from
2o12.

● A 2022 article (see our
course site) argues that
Scrabble should be much
lower down here and the
AI's strength is overstated

How good is Scrabble AI?

What if we want to lose at Scrabble?

Hear me out. This gets surprisingly interesting.

The 1919 White Sox, perhaps
the most infamous (alleged)
intentional losers in sports
history

Playing to lose
● If you want to lose, and the other player wants to win,

congrats! There is no conflict, your dreams probably
both come true, this is boring.

● What if both players are playing to lose (not to tie)?

○ For many games, this may end up being a kind of
uninteresting mirror image of trying to win, with
similar strategies.

○ In Scrabble, though, it becomes something altogether
different and ridiculous…

Wait, why would we want to do this?
● Remember, CS64 is a fun class! Not everything we

discuss will be practical. But…

● Can anyone think of a situation (in any
game/sport, not necessarily Scrabble) in which
both players/teams might actually play to lose?

Wait, why would we want to do this?
● Remember, CS64 is a fun class! Not everything we

discuss will be practical. But…

● Situations like this can arise organically, usually as a
result of bad design that creates perverse incentives.
○ For example, in some tournament structures,

there may be a match between two teams who are
already guaranteed to advance, but the winning
team ends up facing a stronger opponent in
future rounds.

Why is losing in Scrabble hard?
● In Scrabble, on each turn, you can:

○ play one or more tiles
○ exchange as many of your tiles as you want
○ pass

Aside: badly written rules

Fun side note:
the game can in
theory end very
early because of
no playable
moves.

Ruling out some silly stuff…
● In a tournament, you can lose the game by going first,

never making a move, and running out of time. Or
flipping the table. We won't consider this kind of thing.

● Let's not deal with the challenge rules:
○ In some tournaments, an incorrect challenge

awards 5 to 10 points to the other player. In our
setup, there would be no reason not to do this every
time the opponent played a word.

○ We'll assume all plays are valid.

So we want to accumulate
high-valued tiles in our rack by
exchanging, with the goal of
having a higher total than the
opponent at the time that the
game ends from the six-zero
rule.

An exchange-based strategy

Even this is complex
● How do we know which tiles we should exchange?

○ If we have a Q or Z (10 points), we should keep it.
Conversely, blanks are worth 0 and should always
be exchanged.

○ What if we have a D (2 points)? Should we save it, or
exchange and gamble on getting an even better tile?
■ Depends on the distribution of tiles…
■ And our decision might change if it's the first

round of exchanges vs. the third…

But wait, it gets worse
Anyone see why just thinking about exchanges isn't
enough?

Suppose I'm player 2. I'm about to make my third
exchange, which would end the game…

But wait, it gets worse
Suppose I'm player 2. I'm about to make my third
exchange, which would end the game…

● but I might not want to! What if I know I have tiles that
are weaker than average?

● I want to extend the game to try to get more chances to
improve my rack.

● So I need to play something that scores points. But
scoring points is bad, so I play a 2-letter word like IS.
This resets the six-zero counter.

But wait, it gets worse
● If a player is about to end the game with a sixth

zero-scoring turn, they should only do so if they
think they are "ahead".

● This complicates the strategy a lot! For example,
suppose I have a rack of low-valued tiles after my
first exchange, including a blank. If I suspect I'm
going to have to play a weak word to extend the
game, should I actually save the 0-point blank to
reduce the points I score on that play?

And even worse
● In fact, either player has the power to reset the six-zero

count at any time, by playing a word!

● Since at least one player will usually think they could be
behind, this means someone will always keep grudgingly
playing a low-scoring word to extend the game…

● Knowing this, is it better to optimize one's rack for
low-scoring plays, rather than for the penalty on
remaining tiles?

● Open questions! (I may try to do a paper on this)

Some takeaways
● Strategy and game theory can get surprisingly

complicated!

● Playing to lose can be as complicated as playing to win!

● When designing an AI – whether it's "winning" or
"losing" – how can we definitively claim optimality? How
do you know you haven't overlooked some even better
strategy?
○ What if there's not even a single optimal solution

(e.g., paper-scissors-rock)?

Ghost

a good game for long car rides?
…in the age before smartphones, at least. But at least the driver can play!

The rules of Ghost
● Players take turns naming letters.

● If a player's added letter causes the ordered string of all
letters so far to become a word, that player loses.

● After a player adds a letter, the opponent can challenge
them to produce a valid word that could still be formed.
If the player can do that, they win. Otherwise, the
opponent wins.

● The game often descends into arguing about whether a
word is legitimate…

○ Player 1 says B.

○ Player 2 can't say E, for example (it would make BE).
They decide to say R.

○ Player 1 says U, perhaps hoping to trap player 2 into
eventually making BRUTAL.

○ Player 2 says S, hoping to trap player 1 into making
BRUSH.

○ Player 1 has a trick up their sleeve! They say C, hoping
to eventually trap player 2 into eventually making
BRUSCHETTA.

○ Player 2 challenges Player 1, and then the game
descends into an argument about whether
BRUSCHETTA is a word.

○ Players 1 and 2 go out for Italian food so that Player 2
can discover the joys of bruschetta.

An example

Strategy
● This is a lot simpler than Scrabble!

● Once again, we will assume there is no bluffing.

● Call the list of letters that have been named so far a state.

● Claim: Each state is either "winning" or "losing" for the
current player, defined in a recursive way:
○ If all choices would either be illegal or complete a word,

the state is losing. (base case)
○ If at least one choice would hand the other player a losing

state, the state is winning.
○ Otherwise (i.e. if all choices would complete a word or

hand the other player a winning state), the state is losing.

Back to our example
● Some losing states include BRUSCHETT, BRUSCHE, BRUSC.

● Some winning states include BRUSCHET, BRUSCH, BRUS.

● Notice that every state is either winning or losing, so this game
can be completely solved (as long as the players agree on a
wordlist in advance).

● That is, if both players play optimally, the game is either
always a win for the first player or always a loss for the first
player (though we don't know which).
○ Is there a point to playing a solved game?

How to decide whether a state is winning?
● Notice that the game can be described by a tree:

Start

A Z…

A E …

black = is a word
red = definitely losing
green = definitely
winning
yellow = we're not sure
yet

…

A is a word.

ZA is also a
word (East
Coast slang
for pizza.)

How to decide whether a state is winning?
● Notice that the game can be described by a tree:

Pretend, just for
simplicity, that
the only words
extending ZE are
ZED and ZEE.

Start

A Z…

A E …

D E

How to decide whether a state is winning?
● Notice that the game can be described by a tree:

Now we know E
is a losing state.
There is no valid
move from
there.

Start

A Z…

A E …

D E

How to decide whether a state is winning?
● Notice that the game can be described by a tree:

We also now know that
Z is a winning state,
since that player can
play E from there to
leave the opponent with
a losing state.

Start

A Z…

A E …

D E

How to decide whether a state is winning?
● Notice that the game can be described by a tree:

We're still not sure
about the start state. It's
still possible that one of
the other initial moves
(like B) is a losing state,
so the start state could
be a winning state.

But if A, ZA, ZED, ZEE
were the only words,
the start state would be
a losing state.

Start

A Z…

A E …

D E

Representation as a "trie" Each node is either NULL
or has 27 fields:

1 for each of the possible
extensions A, …, Z from
here

1 for whether this node
itself ends a word

For example, suppose we
also had ZAD in this
wordlist in addition to A,
ZA, ZED, ZEE.

Start

A Z

A

A E …

D ED

B C D …

Why tries?
● It's easy to build an entire wordlist into a trie. Think about how you would

start with an empty trie and add words… (don't worry about how you
would delete words)

● Once you have a trie, it's easy to determine whether each node is winning
or losing in Ghost. Traverse the tree and recursively decide for each node
by examining its descendants (if any).
○ Because you instantly lose in Ghost if you make a valid word, don't

explore descendants of nodes with the "this is a word" flag set.

● This is much more efficient than repeatedly iterating through the word
list to see whether adding each letter to the current word produces
another valid word.
○ Hash tables would also work, but would take up much more space (by

storing each word completely, whereas the idea of the trie is to
exploit common prefixes)

