CS64: Computation for Puzzles and Games

7
6
G
5
|

& ‘

3

a AR,

b N d f

Autumn 2022
Lecture 5: Lights Qut!

Chess scandal update

Organizers of this week's World Fischer Random Chess Championship have introduced unprecedented
new security measures to prevent cheating.

Among the tighter measures at the tournament which starts on Tuesday in Reykjavik, Iceland, is the
presence of a medical doctor during the five-day event who will select players and inspect their ears for
any transmitters, World Fischer Random organizer Joran Aulin-Jansson told DW.

ssLIGHTSOFF

e et W | |
IR LS SRl DR TOPRPER: Heh..-5tec on one LJULJ..
il 8l bLutton., and wow’ll reverse the JL_J|

)il M surrounding buttons.] . ‘ .

LightOut

SR “J‘ u\'. oV :

| _’. S
. 7
~ ~ y 1 . L -
. v. » - i, . - d >
g - - ‘“ ’ - L) 4
8 o S oEre \\\\Q Lt T £ - i .
— 3 _”~ - - '7i
: :
RESET
=

r' eBay

Lights out Tiger Hasbro Electronic Handheld e
Game 55316 2002 for sale online | eBay i

https://www.jaapsch.net/puzzles/lights.htm#quiet

The rules

e 5x5 grid of buttons, some are initially lit

e Pushing a button toggles the state of that button and its
(up to four) orthogonal neighbors

e The goal is — as the name implies — to get all the lights to
be off

Exciting live demo!

A heuristic that doesn't work well

e Trytominimize the number of buttons that are on

LicHTS OUT SOLVER .
This

Games and Solvers > Mobile Games > Lights O

Search for a tool COnflgurClthl’l
with only two

lights on...

SEARCH A TOOL ON DCODE BY KEYWORDS:
e.g. type 'sudoku’ <«
BrowsE THE FuLL DCODE TOOLS' LIST
Results Bl@ @ |5 x

Here is a possible solution (number displayed

in a cell = numbe f.changes required,

Ao Jo
. o]0]lo]
...requires 13 %

button] e o]
p reSS esl Lights Out Solver -\

Tag(s) : Mobile Games

See also: Fling Solver — Sudoku Solver

Answers to Questions (FAQ)
What is the Lights Outs game? (Defi

Lights Out is an electronic game composed (
(sometimes with bulbs) or numbered cells (oris

~ At tha ctart Af tha rama A natbarn Af ~alle s

Some useful observations

e The order of the presses does not matter. (Why not?)

Some useful observations

e The order of the presses does not matter.

o Each button's final state is determined entirely by how
many total times it and its neighbors were pressed.

Some useful observations

e The order of the presses does not matter.
o Each button's final state is determined entirely by how

many total times it and its neighbors were pressed.

e Because of this, there is no reason to press any individual
button more than once.

Strategy 1: Brute force

e Breadth-first search!

e Tryeach of the 25 possible starting moves.
o Try each of the 25 possible starting moves from those
configurations.
m etc. etc., repeat until all lights are out

Strategy 1: Brute force

e Breadth-first search!

e Tryeach of the 25 possible starting moves.
o Try each of the 25 possible starting moves from those
configurations.
m etc. etc., repeat until all lights are out

e Some optimizations:
o Keep track of which states we've seen, and don't
re-explore those
o Also keep track of which buttons have been pressed,
and don't press a button twice

def bfsolve(grid):
seen = set()
seen.add(grid)
current_band = [(grid, [])]
steps = 1
while current_band:
print("Trying {} steps away...".format(steps))
new_band = []
for grid, sofar in current_band:
for new_grid, i, j in explore(grid):
if (i, j) in sofar:
continue # don't push the same button more than once
new_sofar = sofar + [(i, j)]
if is_solved(new_grid):
return new_sofar
if new_grid not in seen:
new_band.append((new_grid, new_sofar))

def is_solved(grid): seen.add(new_grid)
for r in grid: current_band = new_band
if True in r: steps +=1 =
return False return 'No solution.

return True grid = tuple([tuple([x == '1' for x in input()]) for

moves = bfsolve(grid)
new_grid = [['0' for c in range(5)] for r in range(5)]

in range(5)1)

def explore(grid):

result = [] for i, j in moves:
for 1 in range(5): new_grid[i] [j] = '1'
for j in range(5): print('\n'.join(['"'.join(r) for r in new_gridl))

new_grid = [list(r) for r in grid]
new_grid[i] [j]1 = not new_grid[i] [j]
for h, v in ((-1, @), (1, 0), (0, -1), (0, 1)):
if (@ <= i+th < 5 and @ <= j+v < 5):
new_grid[i+h] [j+v] = not new_grid[i+h] [j+v]
result.append((tuple([tuple(r) for r in new_gridl), i, j))
return result

Can we do better?

What about the
following strategy:

go through the second
row pushing all the
buttons below any
lights that are on in
the first row...

Can we do better?

What about the
following strategy:

go through the second
row pushing all the
buttons below any
lights that are on in
the first row...

Can we do better?

What about the
following strategy:

go through the second
row pushing all the
buttons below any
lights that are on in
the first row...

Can we do better?

What about the
following strategy:

go through the second
row pushing all the
buttons below any
lights that are on in
the first row...

Can we do better?

What about the
following strategy:

...then repeat for the
third row...

Can we do better?

What about the
following strategy:

...then repeat for the
third row...

Can we do better?

What about the
following strategy:

...then repeat for the
third row...

Can we do better?

What about the
following strategy:

...then repeat for the
third row...

Can we do better?

What about the
following strategy:

...and so on

Can we do better?

What about the
following strategy:

...and so on

Can we do better?

What about the
following strategy:

...and so on

Can we do better?

What about the
following strategy:

...and so on

Can we do better?

What about the
following strategy:

...and so on

Can we do better?

What about the
following strategy:

...and so on

Can we do better?

Now what

e Galaxy brain: Turn
it over and do the
same thing again?

o Unfortunately,
in this case,
this just puts
us back in the
exact same
situation...

Let's back up

The idea here was on the right
track. Once we choose our button
presses in the first row, the rest of
the solve process is totally
determined.

There are 25 = 32 ways to choose
what to do in the first row.

So... try all of them and see if any of
them work!

Let's back up

The idea here was on the right
track. Once we choose our button
presses in the first row, the rest of
the solve process is totally
determined.

There are 25 = 32 ways to choose
what to do in the first row.

So... try all of them and see if any of
them work!

ijpport itertools

A1l possible binary strings of length 5

POSSIBLE_PATTERNS = [''.join(x) for x in itertools.product('01', repeat=5)]

def flip(c):
return '1' if c == '0' else '0Q'

def apply_pattern_to_row(pattern, row):
new_row = row[:]
for ¢ in range(5):
if pattern[c] == '1":
for cc in range(c-1, c+2):
if @ <= cc < 5:
new_row = new_row([@:cc] + flip(new_rowl[cc]l) + new_row[cc+1:]
return new_row
grid = [input() for _ in range(5)] + ['00000'] # add dummy extra row for convenience
best_solution = None

| best_count = 25
| for p in POSSIBLE_PATTERNS:

curr_pattern = p

solution = []

curr_row = grid[0]

for i in range(5):
next_pattern = apply_pattern_to_row(curr_pattern, curr_row)
next_row = "'
for j in range(5):

next_row += flip(grid[i+1]1[j]) if curr_pattern[j] == '1' else grid[i+1][j]

curr_row = next_row
solution.append(curr_pattern)
curr_pattern = next_pattern

if next_pattern == '00000': # we don't care about next_row now since it's off the board

press_count = sum([r.count('1"') for r in solution])
if press_count < best_count:
best_count = press_count
best_solution = solution
print('No solution' if not best_solution else'\n' + '\n'.join(best_solution))

If you use Python and
you like puzzles, the
itertools library is
indispensable

When is it solvable?

Say you want to make a board and hand it to your younger
sibling...

Are there unsolvable puzzles? If so, how many?

Everything is linear algebra

e The grid is a 5x5 matrix of 1s and 0s. We are working over
the finite field F, (basically1+1=0)

e Pushing a button is like adding another matrix. E.g., here's
the matrix corresponding to pushing the middle button:

OO =
O = e e
OO O =
o OO OO
= QD & &
OO O = -
O = O =
O = = QO =
COoO~OO
s s I e B e T

SO O OO

o= OO

O = == O

oo = OO

OO O OO

OO OO0 RRINFOOOROOD 00O

Write each button press
operation as a column
vector like this.

There are 25 such vectors,
one for each button.

SO O OO

O = OO

O = == O

oo = OO

OO O OO

o000 OoOHOOORMEHMFEFOOOHOOOODOOO

Write each button press
operation as a column
vector like this.

There are 25 such vectors,
one for each button.

We can stick these
together in a 25x25 matrix.
Call it M.

v

1100010000000000000000000
1110001000000000000000000
0111000100000000000000000
0011100010000000000000000
0001100001000000000000000
1000011000100000000000000
0100011100010000000000000
0010001110001000000000000
0001000111000100000000000
0000100011000010000000000
0000010000110001000000000
0000001000111000100000000
0000000100011100010000000
0000000010001110001000000
0000000001000110000100000
0000000000100001100010000
0000000000010001110001000
0000000000001000111000100
0000000000000100011100010
0000000000000010001100001
0000000000000001000011000
0000000000000000100011100
0000000000000000010001110
0000000000000000001000111
0000000000000000000100011

Encode the grid state itself as
the column vector g.

Then we want some solution
vector s such that Ms + g = 0.

(Each entry of s corresponds to
"do I use this column vector or
not?", i.e., "do I push this
button or not?)

1100010000000000000000000
1110001000000000000000000
0111000100000000000000000
0011100010000000000000000
0001100001000000000000000
1000011000100000000000000
0100011100010000000000000
0010001110001000000000000
0001000111000100000000000
0000100011000010000000000
0000010000110001000000000
0000001000111000100000000
0000000100011100010000000
0000000010001110001000000
0000000001000110000100000
0000000000100001100010000
0000000000010001110001000
0000000000001000111000100
0000000000000100011100010
0000000000000010001100001
0000000000000001000011000
0000000000000000100011100
0000000000000000010001110
0000000000000000001000111
0000000000000000000100011

O O O O OO O IODIODODIOIODODODODOOLOLObOOOLObOoOOoOFrr oo

O O O OO OO OO oookHrororkr ok

O O O O OO O OO OO OO0 OO0 oo o oo

We're working modulo 2, so any vector plus itself is 0. Therefore we can replace
Ms+g=0
with

Ms=g

Now, for which initial grid states g is there a solution s?

We're working modulo 2, so any vector plus itself is 0. Therefore we can replace
Ms+g=0
with

Ms=g

Now, for which initial grid states g is there a solution s?

Invert M and check s = M'g? Unfortunately, M is not invertible! (This implies
that not all of the buttons are really necessary. In fact, M has rank 23, and so it is
possible to solve any solvable Lights Out puzzle without using two of the
buttons at all.)

Handwaving away some more math...

It can be shown (via more linear algebra) that a configuration is solvable if and
only if it is orthogonal to both of these vectors:

i, =(0,1,1,1.0,1.0,1,0,1.1,1,0,1,1,1,0,1,0,1,0,1,1, l,O)T

s =(1,0, 1,0,1,1,0.1.6.7,0,0,0,0:0.7,6, 10,7, 1,61 6,7

(Orthogonal here means that the dot product of either vector with the initial
state's vector is 0.)

Handwaving away some more math...

It can be shown (via more linear algebra) that a configuration is solvable if and
only if it is orthogonal to both of these vectors:

i, =(0,1,1,1,0,1f0\1fo\1,1,1 o\ 1,1,1f0}1J0\1,0,1,1,1,0)"

i, =(1,0,1,0,1,1)0f[1}0]1,0,0)0[0,0,1}0]1)0]1,1,0,1,0,1)".

(Orthogonal here means that the dot product of either vector with the initial
state's vector is 0.)

Implication: You can get an unsolvable state by taking any solvable state and
toggling a single light (not pressing a button, just changing that one light),
except in one of these positions. (They are a small X in the middle of the grid)

Handwaving away some more math...

It can be shown (via more linear algebra) that a configuration is solvable if and
only if it is orthogonal to both of these vectors:

i, =(0,1,1,1,0,1f0\1fo\1,1,1 o\ 1,1,1f0}1J0\1,0,1,1,1,0)"

i, =(1,0,1,0,1,1)0f[1}0]1,0,0)0[0,0,1}0]1)0]1,1,0,1,0,1)".

(Orthogonal here means that the dot product of either vector with the initial
state's vector is 0.)

Implication: You can get an unsolvable state by taking any solvable state and
toggling a single light (not pressing a button, just changing that one light),
except in one of these positions. (They are a small X in the middle of the grid)
So for any solvable state, there are about 20 unsolvable ones, so < 5% of states
are solvable?

Handwaving away some more math...

It can be shown (via more linear algebra) that a configuration is solvable if and
only if it is orthogonal to both of these vectors:

i, =(0,1,1,1,0,1fo\1Jo\1,1,1o\1,1,1f0]1J0|1,0,1,1,1,0)"

i, =(1,0,1,0,1,1}0[1}0]1,0,0}0[0,0,1}0)1)0/1,1,0,1,0,1)".

(Orthogonal here means that the dot product of either vector with the initial
state'

No! This argument would only work if there were no overlops, i.e., each
Il iT unsolvable state were only reachable from one solvable state. But this
toggli turns out to be very untrue.
excep grid)
So for any solvable state, there are about 20 unsolvable ones, so < 5% of states
are solvable?

Some final facts

e The actual proportion of solvable initial states is Va.

o Instruction manual: "It is possible to create a puzzle so difficult that it
may not have a solution!"

o There are three other "worlds" that you can be stuck in forever!

o Mean tip: start with a grid with just the top left light on (an unsolvable
state), push buttons a bunch of times, then give that puzzle to your
younger sibling.

m What if they start recognizing previously seen bad states and
giving up? Try a different one of the three bad worlds

e For any solvable state, there are actually four solutions (recall that two
buttons don't matter)

|s this problem tractable?

e We have a pretty fast program for the 5x5 board!

e Recall that any fixed-size game has a constant time solution (however

huge the constant!), but we care about how the solving time scales with the
size of the game.

e Our method could be extended to arbitrarily sized square (even nonsquare)
boards...

Let's back up

The idea here was on the right
track. Once we choose our button
presses in the first row, the rest of
the solve process is totally
determined.

There arays to choose
what to db he' first row.

Oh no!l Our algorithm has an exponential
component! So this isn't a polynomial-time
solution.

In fact, this problem is also NP-complete. Boo!

